Characteristics of diamond turned NiP smoothed with ion beam planarization technique

نویسندگان

  • Yaguo Li
  • Hideo Takino
  • Frank Frost
چکیده

Background: Diamond turning is widely used in machining metals and semiconductors but the turning marks are incurred on machined components due to the mechanics of the technology. The marks are generally harmful to the systems comprising of the machined components. Therefore, the capability of ion beam planarization (IBP) to reduce turning marks of diamond turned metal surfaces was investigated using NiP as an example. Methods: The turning marks and thereby roughness was reduced by IBP with respect to different spatial wavelengths and amplitudes of turning marks. Different thickness of coating resist was also examined in order to find out the potential effects of resist thickness on the reduction of turning marks and roughness. Additionally, the effect of multiple planarization steps was also analyzed. Results: The spatial wavelength and depth of turning marks have only minor impact on the degree of surface roughness reduction. Thicker coating tends to achieve smoother surface after coating turned NiP while ion beam etching can keep surface roughness almost unchanged in our experiments. The surface roughness of diamond turned NiP drops exponentially with processing steps under experimented conditions. Using up to five IBP steps, the surface roughness can be reduced up to one order of magnitude (from Rq ~ 6.5 nm to Rq ~ 0.7 nm). Conclusions: IBP technique performs very well in reducing turning marks on diamond turned NiP surfaces. The surface roughness can be further improved by optimizing the properties of planarizing resist layer and coating processes to enhance the IBP technique as a final surface finishing technology.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of bias voltage on structural and mechanical characteristics of diamond-like carbon thin film applied by ion beam deposition

This study, investigates the effect of bias voltage on structural changes of diamond-like carbon thin film created by ion beam deposition is investigated. For this purpose, the bias voltage in the values of 0 V, -50 V, -100 V and -150 V on the AA5083 aluminum alloy was considered. Raman spectroscopy was used to evaluate structural. Influence of the bias voltage on the thickness and roughness of...

متن کامل

Ultra-Sharpening of Diamond Stylus by 500 eV O+/O2 + Ion Beam Machining without Facet and Ripple Formation

The price of single point diamond tools with a sharp tip is very high due to complex machining process and highly expensive machining equipments. Yet, the performance is not quite satisfactory. In this paper, we have presented a very simple and cost effective machining process for the sharpening and polishing of diamond stylus using low energy reactive ion beam machining (RIBM). In our method, ...

متن کامل

Field Emission from As-Grown and Ion-Beam-Sharpened Diamond Particles Deposited on Silicon Tips

Ion-beam bombardment/rnilling was used for sharpening of diamond particles deposited on ends of silicon tips. Radii curvature of diamond coating down to about 20 nm have been formed in such a way. Field emission experiments with sharpened diamond coated emitters have shown that the ion beam treatment effects a considerable shift of current-voltage characteristics of in the lower voltage region.

متن کامل

Development and Characterization of a Diamond-Insulated Graphitic Multi Electrode Array Realized with Ion Beam Lithography

The detection of quantal exocytic events from neurons and neuroendocrine cells is a challenging task in neuroscience. One of the most promising platforms for the development of a new generation of biosensors is diamond, due to its biocompatibility, transparency and chemical inertness. Moreover, the electrical properties of diamond can be turned from a perfect insulator into a conductive materia...

متن کامل

A Low Cost Semiconductor Metallization/ Planarization Process

This paper presents an electrically-mediated process for copper metallization of semiconductor interconnect features. Compared to traditional metallization processes, the proposed electrochemical deposition process uses a singlecomponent bath that contains no difficult-to-control organic accelerators and levelers. The feasibility of the process is demonstrated by copper deposition onto sectione...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017